Decision Trees for Geometric Models

Author:

Arkin Esther M.,Meijer Henk,Mitchell Joseph S. B.,Rappaport David,Skiena Steven S.

Abstract

A fundamental problem in model-based computer vision is that of identifying which of a given set of geometric models is present in an image. Considering a "probe" to be an oracle that tells us whether or not a model is present at a given point, we study the problem of computing efficient strategies ("decision trees") for probing an image, with the goal to minimize the number of probes necessary (in the worst case) to determine which single model is present. We show that a ⌈l g k⌉ height binary decision tree always exists for k polygonal models (in fixed position), provided (1) they are non-degenerate (do not share boundaries) and (2) they share a common point of intersection. Further, we give an efficient algorithm for constructing such decision tress when the models are given as a set of polygons in the plane. We show that constructing a minimum height tree is NP-complete if either of the two assumptions is omitted. We provide an efficient greedy heuristic strategy and show that, in the general case, it yields a decision tree whose height is at most ⌈l g k⌉ times that of an optimal tree. Finally, we discuss some restricted cases whose special structure allows for improved results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical Analysis of Git Bisect;Algorithmica;2023-12-21

2. Partial Order Multiway Search;ACM Transactions on Database Systems;2023-11-13

3. An Optimal Algorithm for Partial Order Multiway Search;ACM SIGMOD Record;2023-06-07

4. Optimal Decision Tree with Noisy Outcomes;SSRN Electronic Journal;2023

5. Optimal Algorithms for Multiway Search on Partial Orders;Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3