Sparse Arrangements and the Number of Views of Polyhedral Scenes

Author:

Berg Mark de1,Halperin Dan2,Overmars Mark1,Kreveld Marc van1

Affiliation:

1. Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

2. Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, California 94305, USA

Abstract

In this paper we study several instances of the problem of determining the maximum number of topologically distinct two-dimensional images that three-dimensional scenes can induce. To bound this number, we investigate arrangements of curves and of surfaces that have a certain sparseness property. Given a collection of n algebraic surface patches of constant maximum degree in 3-space with the property that any vertical line stabs at most k of them, we show that the maximum combinatorial complexity of the entire arrangement that they induce is Θ(n2 k). We extend this result to collections of hypersurfaces in 4-space and to collections of (d > 1)-simplices in d-space, for any fixed d. We show that this type of arrangements (sparse arrangements) is relevant to the study of the maximum number of topologically different views of a polyhedral terrain. For polyhedral terrains with n edges and vertices, we introduce a lower bound construction inducing Ω(n5 α(n)) distinct views, and we present an almost matching upper bound. We then analyze the case of perspective views, point to the potential role of sparse arrangements in obtaining a sharp bound for this case, and present a lower bound construction inducing Ω(n8α(n)) distinct views. For the number of views of a collection of k convex polyhedra with a total of n faces, we show a bound of O(n4 k2) for views from infinity and O(n6 k3) for perspective views. We also present lower bound constructions for such scenes, with Ω(n4 + n2 k4) distinct views from infinity and Ω(n6 + n3 k6) views when the viewpoint can be anywhere in 3-space.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimizing Visible Edges in Polyhedra;Graphs and Combinatorics;2023-09-14

2. Draining a polygon—or—rolling a ball out of a polygon;Computational Geometry;2014-02

3. On the complexity of umbra and penumbra;Computational Geometry;2009-10

4. Smoothed analysis of probabilistic roadmaps;Computational Geometry;2009-10

5. Visibility maps of segments and triangles in 3D;Computational Geometry;2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3