Affiliation:
1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P. R. China
Abstract
Let [Formula: see text] be an edge-colored graph with order [Formula: see text] and [Formula: see text] be a fixed integer satisfying [Formula: see text]. For a vertex set [Formula: see text] of at least two vertices, a tree containing the vertices of [Formula: see text] in [Formula: see text] is called an [Formula: see text]-tree. The [Formula: see text]-tree [Formula: see text] is a total-rainbow [Formula: see text]-tree if the elements of [Formula: see text], except for the vertex set [Formula: see text], have distinct colors. A total-colored graph [Formula: see text] is said to be total-rainbow [Formula: see text]-tree connected if for every set [Formula: see text] of [Formula: see text] vertices in [Formula: see text], there exists a total-rainbow [Formula: see text]-tree in [Formula: see text], while the total-coloring of [Formula: see text] is called a [Formula: see text]-total-rainbow coloring. The [Formula: see text]-total-rainbow index of a nontrivial connected graph [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed in a [Formula: see text]-total-rainbow coloring of [Formula: see text]. In this paper, we show a sharp upper bound for [Formula: see text], where [Formula: see text] is a [Formula: see text]-connected or [Formula: see text]-edge-connected graph.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications