Energy-Efficient Data Aggregation and Cluster-Based Routing in Wireless Sensor Networks Using Tasmanian Fully Recurrent Deep Learning Network with Pelican Variable Marine Predators Algorithm

Author:

Yadawad Shreedhar1,Joshi S. M.1

Affiliation:

1. Department of Computer Science and Engineering, S D M College of Engineering and Technology, Dharwad, Karnataka 580002, India

Abstract

One of the major significant problems in the existing techniques in Wireless Sensor Networks (WSNs) is Energy Efficiency (EE) because sensor nodes are battery-powered devices. The energy-efficient data transmission and routing to the sink are critical challenges because WSNs have inherent resource limitations. On the other hand, the clustering process is a crucial strategy that can rapidly increase network lifetime. As a result, WSNs require an energy-efficient routing strategy with optimum route election. These issues are overcome by using Tasmanian Fully Recurrent Deep Learning Network with Pelican Variable Marine Predators Algorithm for Data Aggregation and Cluster-Based Routing in WSN (TFR-DLN-PMPOA-WSN) which is proposed to expand the network lifetime. Initially, Tasmanian Fully Recurrent Deep Learning Network (TFR-DLN) is proposed to elect the Optimal Cluster Head (OCH). After OCH selection, the three parameters, trust, connectivity, and QoS, are optimized for secure routing with the help of the Pelican Variable Marine Predators Optimization Algorithm (PMPOA). Finally, the proposed method finds the minimum distance among the nodes and selects the best routing to increase energy efficiency. The proposed approach will be activated in MATLAB. The efficacy of the TFR-DLN- PMPOA-WSN approach is assessed in terms of several performances. It achieves higher throughput, higher packet delivery ratio, higher detection rate, lower delay, lower energy utilization, and higher network lifespan than the existing methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3