Affiliation:
1. School of Public Administration, Sichuan University, Chengdu, Sichuan 610065, P. R. China
Abstract
Big data is an unstructured data set with a considerable volume, coming from various sources such as the internet, business organizations, etc., in various formats. Predicting consumer behavior is a core responsibility for most dealers. Market research can show consumer intentions; it can be a big order for a best-designed research project to penetrate the veil, protecting real customer motivations from closer scrutiny. Customer behavior usually focuses on customer data mining, and each model is structured at one stage to answer one query. Customer behavior prediction is a complex and unpredictable challenge. In this paper, advanced mathematical and big data analytical (BDA) methods to predict customer behavior. Predictive behavior analytics can provide modern marketers with multiple insights to optimize efforts in their strategies. This model goes beyond analyzing historical evidence and making the most knowledgeable assumptions about what will happen in the future using mathematical. Because the method is complex, it is quite straightforward for most customers. As a result, most consumer behavior models, so many variables that produce predictions that are usually quite accurate using big data. This paper attempts to develop a model of association rule mining to predict customers’ behavior, improve accuracy, and derive major consumer data patterns. The finding recommended BDA method improves Big data analytics usability in the organization (98.2%), risk management ratio (96.2%), operational cost (97.1%), customer feedback ratio (98.5%), and demand prediction ratio (95.2%).
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献