Affiliation:
1. Department of Computer Science and Engineering, Gitam University, Rudraram, Telangana 502329, India
Abstract
With the rapid explosion of the data streams from the applications, ensuring accurate data analysis is essential for effective real-time decision making. Nowadays, data stream applications often confront the missing values that affect the performance of the classification models. Several imputation models have adopted the deep learning algorithms for estimating the missing values; however, the lack of parameter and structure tuning in classification, degrade the performance for data imputation. This work presents the missing data imputation model using the adaptive deep incremental learning algorithm for streaming applications. The proposed approach incorporates two main processes: enhancing the deep incremental learning algorithm and enhancing deep incremental learning-based imputation. Initially, the proposed approach focuses on tuning the learning rate with both the Adaptive Moment Estimation (Adam) along with Stochastic Gradient Descent (SGD) optimizers and tuning the hidden neurons. Secondly, the proposed approach applies the enhanced deep incremental learning algorithm to estimate the imputed values in two steps: (i) imputation process to predict the missing values based on the temporal-proximity and (ii) generation of complete IoT dataset by imputing the missing values from both the predicted values. The experimental outcomes illustrate that the proposed imputation model effectively transforms the incomplete dataset into a complete dataset with minimal error.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献