Krill Herd and Feed Forward Optimization System-Based Routing Protocol for IoT-MANET Environment

Author:

Sugumaran S.1ORCID,Sivasankaran V.2ORCID,Chitra M. G.3ORCID

Affiliation:

1. Department of ECE, Sreenivasa Institute of Technology, and Management Studies, Chittoor, AP, India

2. School of Electrical and Electronics Engineering, VIT Bhopal University, Sehore, Madhya Pradesh, India

3. Department of Computer Science, M.M.E.S Women’s Arts and Science College, Melvisharam, Tamil Nadu, India

Abstract

The Internet of Things (IoT) is a developing technology in the world of communication and embedded systems. The IoT consists of a wireless sensor network with Internet service. The data size of the sensor node is small, but the routing of the data and energy consumption are important issues that need to be advocated. The Mobile Adhoc Network (MANET) plays a very important role in IoT services. In MANET, nodes are moving within the network. So, routes are created dynamically on demand and do not have any centralized units. The route optimization method addresses issues like selecting the best routes in terms of overhead, loop free, traffic control, balancing, throughput, route maintenance, and so on. In this paper, IoT routes are created between sensors to sink through MANET nodes with WSN routing ideology. The Krill Herd and Feed Forward Optimization (KH-FFO)-based method discovers the routes. The Krill herd algorithm clusters the network. This method increases network speed and reduces energy waste. Feed-forward optimization involves learning all the nodes in the network and identifying the shortest and most energy-efficient route from source to sink. The overall performance of the KH-FFO protocol has improved the network’s capacity, reduced packet loss, and increased the energy utilization of the nodes in the network. The ns-3 simulation for KH-FFO is tested in different node densities and observed energy utilization is increased by 28%, network life is increased by 7%, Packet delivery ratio improved by 7.5%, the End-to-End delay improved by 31% and the Throughput is 3%. These metrices are better than the existing works in the network.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3