MODELS OF DISTRIBUTED-SHARED-MEMORY ON AN INTERCONNECTION NETWORK FOR BROADCAST COMMUNICATION

Author:

KATSINIS CONSTANTINE1

Affiliation:

1. Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA

Abstract

Due to advances in fiber-optics and VLSI technology, interconnection networks which allow multiple simultaneous broadcasts are becoming feasible. This paper examines the performance of distributed-shared-memory (DSM) systems based on the Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus) using queuing network models and develops theoretical results which predict processor utilization, message latency and other useful measures. It also presents simulation results which compare the performance of the SOME-Bus, the mesh and the torus using queuing-network models. The SOME-Bus is a low-latency, high-bandwidth, fiber-optic interconnection network which directly links arbitrary pairs of processor nodes without contention, and can efficiently interconnect over one hundred nodes. It contains a dedicated channel for the data output of each node, eliminating the need for global arbitration and providing bandwidth that scales directly with the number of nodes in the system. Each of the N nodes has an array of receivers, with one receiver dedicated to each node output channel. No node is ever blocked from transmitting by another transmitter or due to contention for shared switching logic. The entire N-receiver array can be integrated on a single chip at a comparatively minor cost resulting in o(N) complexity. The SOME-Bus has much more functionality than a crossbar by supporting multiple simultaneous broadcasts of messages, allowing cache consistency protocols to complete much faster. The effect of collective communications due to cache coherence is examined. Results reveal that the performance of the SOME-Bus interconnection network is the least affected by large communication times, compared to the other two architectures considered here. Even in the presence of intense coherence traffic, processor utilization and message latency is much less affected than in the other architectures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3