Online Job Dispatching and Scheduling to Minimize Job Completion Time and to Meet Deadlines

Author:

LI YUPENG1

Affiliation:

1. Shenzhen Research Institute of Big Data, P. R. China

Abstract

In this paper, we study the problem of job dispatching and scheduling, where each job consists of a set of tasks. Each task is processed by a set of machines simultaneously. We consider two important performance metrics, the average job completion time (JCT), and the number of deadline-aware jobs that meet their deadlines. The goal is to minimize the former and maximize the latter. We first propose OneJ to minimize the job completion time (JCT) when there is exactly one single job in the system. Then, we propose an online algorithm called MultiJ, taking OneJ as a subroutine, to minimize the average JCT, and prove it has a good competitive ratio. We then derive another online algorithm QuickJ to maximize the number of jobs that can meet their deadlines. We show that QuickJ is competitive via a worst case analysis. We also conjecture that the competitive ratio of QuickJ is likely to be the best one that any deterministic algorithm can achieve. We also shed light on several important merits of MultiJ and QuickJ, such as no severe coordination overhead, scalability, work conservation, and no job starvation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3