Affiliation:
1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P. R. China
2. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P. R. China
Abstract
Given a connected graph [Formula: see text] and [Formula: see text] with [Formula: see text], an [Formula: see text]-tree is a such subgraph [Formula: see text] of [Formula: see text] that is a tree with [Formula: see text]. Two [Formula: see text]-trees [Formula: see text] and [Formula: see text] are edge-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum size of a set of edge-disjoint [Formula: see text]-trees in [Formula: see text]. The [Formula: see text]-connectivity of [Formula: see text] is defined as [Formula: see text]. In this paper, we first show some structural properties of edge-disjoint [Formula: see text]-trees by Fan Lemma and König-ore Formula. Then, the [Formula: see text]-connectivity of the Cartesian product of trees is determined. That is, let [Formula: see text] be trees, then [Formula: see text] if [Formula: see text] for each [Formula: see text], otherwise [Formula: see text]. As corollaries, [Formula: see text]-connectivity for some graph classes such as hypercubes and meshes can be obtained directly.
Funder
Department of Science and Technology of Henan
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications