Affiliation:
1. College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
Abstract
A strong digraph [Formula: see text] is strongly Menger (arc) connected if, for [Formula: see text], [Formula: see text] can reach [Formula: see text] by min[Formula: see text] internally (arc) disjoint-directed paths. A digraph [Formula: see text] is [Formula: see text](-arc)-fault-tolerant strongly Menger([Formula: see text]-(A)FTSM, for short) (arc) connected if [Formula: see text] is strongly Menger (arc) connected for every [Formula: see text](respectively, [Formula: see text]) with [Formula: see text]. A digraph [Formula: see text] is [Formula: see text]-conditional (arc)-fault-tolerant strongly Menger ([Formula: see text]-C(A)FTSM, for short) (arc) connected if [Formula: see text] is strongly Menger (arc) connected for every [Formula: see text](respectively, [Formula: see text]) with [Formula: see text] and [Formula: see text]. The directed [Formula: see text]-ary [Formula: see text]-cube [Formula: see text] [Formula: see text] and [Formula: see text] is a digraph with vertex set [Formula: see text]. For two vertices [Formula: see text] and [Formula: see text], [Formula: see text] dominates [Formula: see text] if there exists an integer [Formula: see text], [Formula: see text], satisfying [Formula: see text]mod [Formula: see text] and [Formula: see text], when [Formula: see text]. In this paper, we show that [Formula: see text] [Formula: see text] is [Formula: see text]-AFTSM arc connected when [Formula: see text], [Formula: see text]-FTSM connected when [Formula: see text], [Formula: see text]-CAFTSM arc connected when [Formula: see text], and [Formula: see text]-CFTSM connected when [Formula: see text].
Funder
Natural Science Foundation of Xinjiang Province
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications