APPROXIMATING HYPERCUBES BY INDEX-SHUFFLE GRAPHS VIA DIRECT-PRODUCT EMULATIONS

Author:

OBRENIĆ BOJANA1

Affiliation:

1. Department of Computer Science, Queens College and Graduate Center, City University of New York, Flushing, NY 11367, USA

Abstract

Index-shuffle graphs are a family of bounded-degree hypercube-like interconnection networks for parallel computers, introduced by [Baumslag and Obrenić (1997): Index-Shuffle Graphs, …], as an efficient substitute for two standard families of hypercube derivatives: butterflies and shuffle-exchange graphs. In the theoretical framework of graph embedding and network emulations, this paper shows that the index-shuffle graph efficiently approximates the direct-product structure of the hypercube, and thereby has a unique potential to approximate efficiently all of its derivatives. One of the consequences of our results is that any member of the following group of standard bounded-degree hypercube derivatives: butterflies, shuffles, tori, meshes of trees, is emulated by the index-shuffle graph with a slowdown in the order of the logarithm of the slowdown of the most efficient emulation achieved by any other member of this group. Emulation algorithms are presented where the emulation host is the n-dimensional index-shuffle graph Ψn, having N=2n nodes. The emulated graph G is a direct product of the form: G=F0×F1×⋯×Fk-1 where k is a power of 2, and each factor Fi is an instance of any of the following three graph families: cycle, complete binary tree, X-tree. Let the size of each factor be |Fi|≤2nf, where k·nf≤n. The index-shuffle graph Ψn, emulates any factor Fi in the product G with slowdown: O( log k) + O( log nf), which is O( log n) = O( log log N). Any collection of 2 copies of the product G, such that: ℓ+k·nf≤n is emulated by the index-shuffle graph Ψn simultaneously, without any additional slowdown. Relaxing the assumption that k is a power of 2 introduces an additional factor of O( lg *N) into the slowdown.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3