Affiliation:
1. School of Electrical Engineering and Computing, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
Abstract
Modern methods for network analytics provide an opportunity to revisit preconceived notions in the classification of diseases as “clusters of symptoms”. Curated collections which were subsequently modified, like the Diagnostic and Statistical Manuals of Mental Disorders “DSM-IV” and the most recent addition, DSM-5 allow us to introspect, using the solution provided by modern algorithms, if there exists a consensus between the clusters obtained via a data-driven approach, with the current classifications. In the case of mental disorders, the availability of a follow-up consensus collection (e.g. in this case the DSM-5), potentially allows investigating if the classification of disorders has moved closer (or away) to what a data-driven analytic approach would have unveiled by objectively inferring it from the data of DSM-IV. In this contribution, we present a new type of mathematical approach based on a global cohesion score which we introduce for the first time for the identification of communities of symptoms. Different from other approaches, this combinatorial optimization method is based on the identification of “triangles” in the network; these triads are the building block of feedback loops that can exist between groups of symptoms. We used a memetic algorithm to obtain a collection of highly connected-cohesive sets of symptoms and we compare the resulting community structure with the classification of disorders present in the DSM-IV.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献