BROADCASTING IN BUS INTERCONNECTION NETWORKS

Author:

FERREIRA A.1,GOLDMAN A.2,SONG S. W.2

Affiliation:

1. CNRS - I3S, INRIA Sophia Antipolis, 2004, route des Lucioles - B.P. 93, 06902 Sophia Antipolis Cedex, France

2. DCC - IME - USP, C.P. 20570 - São Paulo, SP 01498-970, Brazil

Abstract

In most distributed memory MIMD multiprocessors, processors are connected by a point-to-point interconnection network, usually modeled by a graph where processors are nodes and communication links are edges. Since interprocessor communication frequently constitutes serious bottlenecks, several architectures were proposed that enhance point-to-point topologies with the help of multiple bus systems so as to improve the communication efficiency. In this paper we study parallel architectures where the communication means are constituted solely by buses. These architectures can use the power of bus technologies, providing a way to interconnect much more processors in a simple and efficient manner. We present the hyperpath, hypergrid, hyperring, and hypertorus architectures, which are the bus-based versions of the well used point-to-point interconnection networks. Using (hyper) graph theoretic concepts to model inter-processor communication in such networks, we give optimal algorithms for broadcasting a message from one processor to all the others. For deriving high performance communication patterns we developed a new tool called simplification. The idea is to construct a graph, to be called representative graph, from the original hyper-topology, in such a way that it will become easy to describe and perform communication schemes to the former that will fit to the latter, because the simplification concept also allows us to partially use some already known communication algorithms for usual networks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3