REPARTITORS, SELECTORS AND SUPERSELECTORS

Author:

HAVET FRÉDÉRIC1

Affiliation:

1. Projet Mascotte, CNRS/INRIA/UNSA, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France

Abstract

An (n, p, f)-network G is a graph (V, E) where the vertex set V is partitioned into four subsets [Formula: see text] and [Formula: see text] called respectively the priorities, the ordinary inputs, the outputs and the switches, satisfying the following constraints: there are p priorities, n - p ordinary inputs and n + f outputs; each priority, each ordinary input and each output is connected to exactly one switch; switches have degree at most 4. An (n, p, f)-network is an (n, p, f)-repartitor if for any disjoint subsets [Formula: see text] and [Formula: see text] of [Formula: see text] with [Formula: see text] and [Formula: see text], there exist in G, n edge-disjoint paths, p of them from [Formula: see text] to [Formula: see text] and the n - p others joining [Formula: see text] to [Formula: see text]. The problem is to determine the minimum number R(n, p, f) of switches of an (n, p, f)-repartitor and to construct a repartitor with the smallest number of switches. In this paper, we show how to build general repartitors from (n, 0, f)-repartitors also called (n, n + f)-selectors. We then consrtuct selectors using more powerful networks called superselectors. An (n, 0, 0)-network is an n-superselector if for any subsets [Formula: see text] and [Formula: see text] with [Formula: see text], there exist in G, [Formula: see text] edge-disjoint paths joining [Formula: see text] to [Formula: see text]. We show that the minimum number of switches of an n-superselector S+ (n) is at most 17n + O(log(n)). We then deduce that [Formula: see text] if [Formula: see text], R(n, p, f) ≤ 18n + 34f + O( log (n + f)), if [Formula: see text] and [Formula: see text] if [Formula: see text]. Finally, we give lower bounds for R(n, 0, f) and S+ (n) and show optimal networks for small value of n.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3