Affiliation:
1. School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, P. R. China
2. School of Computer, Qinghai Normal University, Xining, Qinghai 810008, P. R. China
Abstract
For a vertex set [Formula: see text], we say that [Formula: see text] is a monitoring-edge-geodetic set (MEG-set for short) of graph [Formula: see text], that is, some vertices of [Formula: see text] can monitor an edge of the graph, if and only if we can remove that edge would change the distance between some pair of vertices in the set. The monitoring-edge-geodetic number [Formula: see text] of a graph [Formula: see text] is defined as the minimum cardinality of a monitoring-edge-geodetic set of [Formula: see text]. The line graph [Formula: see text] of [Formula: see text] is the graph whose vertices are in one-to-one correspondence with the edges of [Formula: see text], that is, if two vertices are adjacent in [Formula: see text] if and only if the corresponding edges have a common vertex in [Formula: see text]. In this paper, we study the relation between [Formula: see text] and [Formula: see text], and prove that [Formula: see text]. Next, we have determined the exact values for a MEG-set of some special graphs and their line graphs. For a graph [Formula: see text] and its line graph [Formula: see text], we prove that [Formula: see text] can be arbitrarily large.
Funder
the National Science Foundation of China
the Qinghai Key Laboratory of Internet of Things Project
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications