Adaptive Shewhart Control Charts Under Fuzzy Parameters with Tuned Particle Swarm Optimization Algorithm

Author:

Amiri Amirhossein1ORCID,Salmasnia Ali2ORCID,Zarifi Meraj3,Maleki Mohammad Reza4ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

2. Department of Industrial Engineering, Faculty of Engineering, University of Qom, Iran

3. Department of Industrial Engineering, University of Eyvanekey, Semnan, Iran

4. Industrial Engineering Group, Golpayegan College of Engineering, Golpayegan 87717-67498, Isfahan University of Technology, Iran

Abstract

In recent years, adaptive control charts in which the design parameters depend on the observed samples have been successfully used as efficient alternatives for traditional control charts with constant parameters. In crisp run control rules, the process state may change very sharply from in-control to out-of-control conditions which increase the rate of false alarms. To overcome this drawback, this paper presents an adaptive Shewhart-type control chart, where the design parameters (sample size ([Formula: see text]), sampling interval ([Formula: see text]), and control limit coefficients ([Formula: see text] and [Formula: see text])) are defined with linguistic variables. To accomplish that, the chart parameters are determined based on the location of eight previous chart statistics using a set of fuzzy rules in a continuous environment. In order to improve the sensitivity of the proposed control chart in detecting small shifts in both location and scale parameters, the adaptive procedure is designed by integration of fuzzy Western Electric rules and fuzzy adaptive sampling rules. After designing the control charts using a fuzzy inference system (FIS), in order to provide an economic design of the proposed control chart, a tuned Particle Swarm Optimization (PSO) algorithm is employed to determine the optimal values corresponding to membership functions of the control chart parameters. Finally, using simulation studies, the capability of the proposed control chart is analyzed and compared with common charts in the literature. The results confirm that under different shifts in location and scale parameters, the proposed control chart outperforms other charts in terms of both economic and statistical criteria.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Management of Technology and Innovation,Strategy and Management,General Engineering,Business and International Management

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3