Affiliation:
1. L2F, INESC-ID Lisboa/IST, Av. Prof. Cavaco Silva, 2780-990 Porto Salvo Tagus Park, Portugal
Abstract
In the last decades, several research areas experienced key improvements due to the appearance of numerous tools made available to the scientific community. For instance, Moses plays an important role in recent developments in machine translation and Lucene is, with no doubt, a widespread tool in information retrieval. The existence of these systems allows an easy development of baselines and, therefore, researchers can focus on improving preliminary results, instead of spending time in developing software from scratch. In addition, the existence of appropriate test collections leads to a straightforward comparison of systems and of their specific components. In this paper we describe Just.Ask, a multi-pronged approach to open-domain question answering. Just.Ask combines rule- with machine learning-based components and implements several state-of-the-art strategies in question answering. Also, it has a flexible architecture that allows for further extensions. Moreover, in this paper we report a detailed evaluation of each one of Just.Ask components. The evaluation is split into two parts: in the first one, we use a manually built test collection — the GoldWebQA — that intends to evaluate Just.Ask performance when the information source in use is the Web, without having to deal with its constant changes; in the second one, we use a set of questions gathered from the TREC evaluation forum, having a closed text collection, locally indexed and stored, as information source. Therefore, this paper contributes with a benchmark for research on question answering, since both Just.Ask and the GoldWebQA corpus are freely available for the scientific community.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献