Incremental Subclass Support Vector Machine

Author:

Besrour Amine1ORCID,Ksantini Riadh23

Affiliation:

1. Higher School of Communications of Tunis (Sup’Com), MEDIATRON Lab, Carthage University, Tunis, Tunisia, CP 2080, Tunisia

2. Digital Security Research Lab, Higher School of Communication of Tunis (Sup’Com), University of Carthage, Tunisia, Tunisia

3. University of Windsor, 401, Sunset Avenue, Windsor, ON, Canada

Abstract

Support Vector Machine (SVM) is a very competitive linear classifier based on convex optimization problem, were support vectors fully describe decision boundary. Hence, SVM is sensitive to data spread and does not take into account the existence of class subclasses, nor minimizes data dispersion for classification performance improvement. Thus, Kernel subclass SVM (KSSVM) was proposed to handle multimodal data and to minimize data dispersion. Nevertheless, KSSVM has difficulties in classifying sequentially obtained data and handling large scale datasets, since it is based on batch learning. For this reason, we propose a novel incremental KSSVM (iKSSVM) which handles dynamic and large data in a proper manner. The iKSSVM is still based on convex optimization problem and minimizes data dispersion within and between data subclasses incrementally, in order to improve discriminative power and classification performance. An extensive comparative evaluation of the iKSSVM to batch KSSVM, as well as, other contemporary incremental classifiers, on real world datasets, has shown clearly its superiority in terms of classification accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lumbar Disease Classification Using an Involutional Neural Based VGG Nets (INVGG);IEEE Access;2024

2. Vehicle detection in the infra-red thermal images based on a sparse neural network;Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022);2023-06-27

3. Multiple vehicles tracking in the aerial video based on fast incremental discriminative appearance learning;Twelfth International Conference on Graphics and Image Processing (ICGIP 2020);2021-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3