Fairness for Deep Learning Predictions Using Bias Parity Score Based Loss Function Regularization

Author:

Jain Bhanu1,Huber Manfred1,Elmasri Ramez1

Affiliation:

1. The University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76019, USA

Abstract

Rising acceptance of machine learning driven decision support systems underscores the need for ensuring fairness for all stakeholders. This work proposes a novel approach to increase a Neural Network model’s fairness during the training phase. We offer a frame-work to create a family of diverse fairness enhancing regularization components that can be used in tandem with the widely accepted binary-cross-entropy based accuracy loss. We use Bias Parity Score (BPS), a metric that quantifies model bias with a single value, to build loss functions pertaining to different statistical measures — even for those that may not be developed yet. We analyze behavior and impact of the newly minted regularization components on bias. We explore their impact in the realm of recidivism and census-based adult income prediction. The results illustrate that apt fairness loss functions can mitigate bias without forsaking accuracy even for imbalanced datasets.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Explainable, Fair, and Trustworthy AI;International Journal on Artificial Intelligence Tools;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3