Affiliation:
1. The University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76019, USA
Abstract
Rising acceptance of machine learning driven decision support systems underscores the need for ensuring fairness for all stakeholders. This work proposes a novel approach to increase a Neural Network model’s fairness during the training phase. We offer a frame-work to create a family of diverse fairness enhancing regularization components that can be used in tandem with the widely accepted binary-cross-entropy based accuracy loss. We use Bias Parity Score (BPS), a metric that quantifies model bias with a single value, to build loss functions pertaining to different statistical measures — even for those that may not be developed yet. We analyze behavior and impact of the newly minted regularization components on bias. We explore their impact in the realm of recidivism and census-based adult income prediction. The results illustrate that apt fairness loss functions can mitigate bias without forsaking accuracy even for imbalanced datasets.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advances in Explainable, Fair, and Trustworthy AI;International Journal on Artificial Intelligence Tools;2024-04-22