A New SVM Kernel for Keyword Spotting Using Confidence Measures

Author:

Ben Ayed Yassine12

Affiliation:

1. MIRACL: Multimedia, Information Systems and Advanced Computing Laboratory, Sfax University, Tunisia

2. Pole technologique de Sfax: Route de Tunis Km 10 B.P. 242 SFAX 3021, Tunisia

Abstract

In this paper, we propose an alternative keyword spotting method relying on confidence measures and support vector machines. Confidence measures are computed from phone information provided by a Hidden Markov Model based speech recognizer. We use three kinds of techniques, i.e., arithmetic, geometric and harmonic means to compute a confidence measure for each word. The acceptance/rejection decision of a word is based on the confidence vector processed by the SVM classifier for which we propose a new Beta kernel. The performance of the proposed SVM classifier is compared with spotting methods based on some confidence means. Experimental results presented in this paper show that the proposed SVM classifier method improves the performances of the keyword spotting system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3