CAEP: AN EVOLUTION-BASED TOOL FOR REAL-VALUED FUNCTION OPTIMIZATION USING CULTURAL ALGORITHMS

Author:

Chung Chan-Jin1,Reynolds Robert G.2

Affiliation:

1. Department of Mathematics and Computer Science, Lawrence Technological University, Southfield, MI 48075-1058, USA

2. Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

Abstract

Cultural Algorithms are computational self-adaptive models which consist of a population and a belief space. The problem-solving experience of individuals selected from the population space by the acceptance function is generalized and stored in the belief space. This knowledge can then control the evolution of the population component by means of the influence function. Here, we examine the role that different forms of knowledge can play in the self-adaptation process within cultural systems. In particular, we compare various approaches that use normative and situational knowledge in different ways to guide the function optimization process. The results in this study demonstrate that Cultural Algorithms are a naturally useful framework for self-adaptation and that the use of a cultural framework to support self-adaptation in Evolutionary Programming can produce substantial performance improvements over population-only systems as expressed in terms of (1) systems success ratio, (2) execution CPU time, and (3) convergence (mean best solution) for a given set of 34 function minimization problems. The nature of these improvements and the type of knowledge that is most effective in producing them depend on the problem's functional landscape. In addition, it was found that the same held true for the population-only self-adaptive EP systems. Each level of self-adaptation (component, individual, and population) outperformed the others for problems with particular landscape features.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3