DISCRIMINATIVELY WEIGHTED NAIVE BAYES AND ITS APPLICATION IN TEXT CLASSIFICATION

Author:

JIANG LIANGXIAO1,WANG DIANHONG2,CAI ZHIHUA1

Affiliation:

1. Department of Computer Science, China University of Geosciences, Wuhan, Hubei 430074, P. R. China

2. Department of Electronic Engineering, China University of Geosciences, Wuhan, Hubei 430074, P. R. China

Abstract

Many approaches are proposed to improve naive Bayes by weakening its conditional independence assumption. In this paper, we work on the approach of instance weighting and propose an improved naive Bayes algorithm by discriminative instance weighting. We called it Discriminatively Weighted Naive Bayes. In each iteration of it, different training instances are discriminatively assigned different weights according to the estimated conditional probability loss. The experimental results based on a large number of UCI data sets validate its effectiveness in terms of the classification accuracy and AUC. Besides, the experimental results on the running time show that our Discriminatively Weighted Naive Bayes performs almost as efficiently as the state-of-the-art Discriminative Frequency Estimate learning method, and significantly more efficient than Boosted Naive Bayes. At last, we apply the idea of discriminatively weighted learning in our algorithm to some state-of-the-art naive Bayes text classifiers, such as multinomial naive Bayes, complement naive Bayes and the one-versus-all-but-one model, and have achieved remarkable improvements.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3