Deep Understanding of Technical Documents: Part I. Diagrams Structural-functional Modeling

Author:

Bourbakis N. G.1,Rematska G.1,Mertoguno S.1

Affiliation:

1. CART Center, WSU, Dayton, Ohio, USA

Abstract

The automatic deep understanding of technical documents is a privilege only to humans so far, since it requires knowledge coming from many different modalities, like text, diagrams, formulas, tables, graphics, pictures, etc. Thus, in response to this very large and complex challenge, this paper investigates the synergistic association of only two modalities, the diagrams as main modality and natural language text as an assistive one in an effort to combine them together for deeper understanding of technical documents. In particular, it presents the formal modelling of a hybrid methodology capable to automatically extract the structural and functional behavior of a system described in a technical document without the use of original code. By system here we mean the block diagram(s) of a system. The methodology presented here is based on a formal language, called Synergy, to efficiently represent and synthesize the structural features of the system, and convert them into a Stochastic Petri-nets (SPN) model as for expressing the functional behavior of the understudy system. The overall methodology will contribute to an automatic deep understanding of technical documents (TD) without the main involvement of human users.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting Pseudocode from Digital Block Diagram in Technical Documents;International Journal on Artificial Intelligence Tools;2023-09

2. Deep Understanding of Technical Documents: An Enhancement on Diagrams Understanding;International Journal on Artificial Intelligence Tools;2021-08

3. Deep Understanding of Technical Documents: Part II. Automatic Extraction of Pseudocode;International Journal on Artificial Intelligence Tools;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3