Affiliation:
1. Department of Computer Science and Engineering, National Institute of Technology Warangal, Warangal, Telengana 506004, India
Abstract
One of the most sought-after research areas in object detection is pedestrian detection owing to its applications especially in automated surveillance and robotics. Traditional methods use hand-crafted features to characterize pedestrians. In this work, we have pro-posed a new hand-crafted feature extraction method that concatenates shape, color and texture features; which is then classified by using Support Vector Machine (SVM). As in recent years, deep learning models such as Convolutional Neural Networks (CNNs) have become an eminent state of the art in detection challenges, which unlike the manually designed feature extraction mechanism, results in more accuracy. Therefore, we have also proposed a CNN network, a modification of the pre-trained ResNet-18 named as Multi-layer Feature Fused-ResNet (MF2-ResNet). We have used the proposed modification for (1) feature extraction; which is then classified by using Support Vector Machine (SVM); (2) End-to-End feature extraction and classification by the CNN network and (3) MF2-ResNet based Faster-RCNN to include region proposals in the detection pipeline. To evaluate the proposed method, it is compared with existing pre-trained CNNs. The MF2-ResNet based Faster R-CNN is compared with state-of-the-art detection methods. Three benchmark pedestrian datasets are used in this work: INRIA, NICTA and Daimler.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献