Enhancing Effectiveness of Dimension Reduction in Text Classification

Author:

Seyyedi Seyyed Hossein1,Minaei-Bidgoli Behrouz2

Affiliation:

1. Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, 34199-15195, Iran

2. School of Computer Engineering, Iran University of Science and Technology Tehran, 16846-13114, Iran

Abstract

Nowadays, text is one prevalent forms of data and text classification is a widely used data mining task, which has various application fields. One mass-produced instance of text is email. As a communication medium, despite having a lot of advantages, email suffers from a serious problem. The number of spam emails has steadily increased in the recent years, leading to considerable irritation. Therefore, spam detection has emerged as a separate field of text classification. A primary challenge of text classification, which is more severe in spam detection and impedes the process, is high-dimensionality of feature space. Various dimension reduction methods have been proposed that produce a lower dimensional space compared to the original. These methods are divided mainly into two groups: feature selection and feature extraction. This research deals with dimension reduction in the text classification task and especially performs experiments in the spam detection field. We employ Information Gain (IG) and Chi-square Statistic (CHI) as well-known feature selection methods. Also, we propose a new feature extraction method called Sprinkled Semantic Feature Space (SSFS). Furthermore, this paper presents a new hybrid method called IG_SSFS. In IG_SSFS, we combine the selection and extraction processes to reap the benefits from both. To evaluate the mentioned methods in the spam detection field, experiments are conducted on some well-known email datasets. According to the results, SSFS demonstrated superior effectiveness over the basic selection methods in terms of improving classifiers’ performance, and IG_SSFS further enhanced the performance despite consuming less processing time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3