Affiliation:
1. School of Computer, Guangdong University of Technology, Guangzhou 510006, P. R. China
2. Department of Computer Science, Jinan University, Guangzhou 510632, P. R. China
Abstract
Recently, there is increasing interest in action model learning. However, most previous studies focused on learning effect-based action models. On the other hand, a rule-based planning domain description language was proposed in the latest planning competition. That is the Relational Dynamic Influence Diagram Language (RDDL). It uses rules to describe transitions instead of action models. In this paper, we build a system to learn planning domain descriptions in the RDDL. There are three major parts of an RDDL domain description: constraints, transitions and rewards. We first take advantage of the finite state machine analysis to identify constraints. Then, we employ the inductive learning technique to learn transitions. At last, we use regression to fix rewards. The evaluation was performed on benchmarks from planning competitions. It showed that our system can learn domain descriptions in the RDDL with low error rates. Moreover, our system is developed based on classical approaches. It implicates that the RDDL roots in previous planning languages. Therefore, more classical approaches could be useful in the RDDL domains.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PRobPlan: A Framework of Integrating Probabilistic Planning Into ROS;IEEE Access;2020
2. Cost-Sensitive Action Model Learning;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2016-04