Affiliation:
1. Applied Automation Laboratory, Automation Department, University M'Hamed Bougara of Boumerdes, Avenue of Independence, Boumerdes 35000, Algeria
2. LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10–12 Avenue of Europe, 78140 Velizy, France
Abstract
The quality of service (QoS) multicast routing problem is one of the main issues for transmission in communication networks. It is known to be an NP-hard problem, so many heuristic algorithms have been employed to solve the multicast routing problem and find the optimal multicast tree which satisfies the requirements of multiple QoS constraints such as delay, delay jitter, bandwidth and packet loss rate. In this paper, we propose an improved chaotic binary bat algorithm to solve the QoS multicast routing problem. We introduce two modification methods into the binary bat algorithm. First, we use the two most representative chaotic maps, namely the logistic map and the tent map, to determine the parameter [Formula: see text] of the pulse frequency [Formula: see text]. Second, we use a dynamic formulation to update the parameter α of the loudness [Formula: see text]. The aim of these modifications is to enhance the performance and the robustness of the binary bat algorithm and ensure the diversity of the solutions. The simulation results reveal the superiority, effectiveness and efficiency of our proposed algorithms compared with some well-known algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Jumping Particle Swarm Optimization (JPSO), and Binary Bat Algorithm (BBA).
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献