Affiliation:
1. Department of Software Engineering, Tarsus University, Tarsus, Mersin, Turkey
Abstract
In the context of learning analytics, machine learning techniques have been commonly used in order to shed a light on solving educational problems. The studies can be associated with the curriculum design, mostly at course level, which target to improve the learning and teaching processes. In this study, the relationship between the courses was analyzed via artificial neural network (ANN) to provide a support for curriculum development process at a program level. Extracting the dependence among courses within a program plays a key role in placing them coherently to ensure the success of curriculum. For this purpose, it was investigated if the performance of students in a subsequent course is influenced from the performance in some previous basic courses. The results demonstrated that the performance relations could be used to describe information for prioritization and sequencing of courses within a program. In addition, ANN can successfully predict the student performances leading to find out the relationships between these courses. The application of the multilayer feedforward neural network resulted in an achievement of a prospering prediction performance based on the grades of prerequisite courses with 87% accuracy rate without sacrificing a significant sensitivity.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献