Overcoming the Limitations of Learning-Based VQA for Counting Questions with Zero-Shot Learning

Author:

Lubna A.1ORCID,Kalady Saidalavi1ORCID

Affiliation:

1. Department of Computer Science and Engineering, National Institute of Technology Calicut, NITC P.O., Kozhikode 673601, Kerala, India

Abstract

Visual question answering (VQA) research has garnered increasing attention in recent years. It is considered a visual Turing test because it requires a computer to respond to textual questions based on an image. Expertise in computer vision, natural language processing, knowledge understanding, and reasoning is required to solve the problem of VQA. Most techniques employed for VQA consist of models that are developed to learn the combination of image and question features along with the expected answer. The techniques chosen for image and question feature extraction and combining the features change with each model. This method of teaching a model of the question–answer pattern is ineffective for queries that involve counting and reasoning. This approach also requires considerable resources and large datasets for the training. The general VQA datasets feature a restricted number of items as responses to counting questions ([Formula: see text]), and the distribution of the answers is not uniform. To investigate these issues in VQA, we created synthetic datasets that could be modified to adjust the number of objects in the image and the amount of occlusion. Specifically, a zero-shot learning VQA system was devised for counting-related questions that provide answers by analyzing the output of an object detector and the query keywords. Using synthetic datasets, our model generated 100% correct results. Testing on the benchmark datasets task directed image understanding challenge (TDIUC) and TallyQA-simple indicated that the proposed model matched the performance of the learning-based baseline models. This methodology can be used efficiently for counting VQA questions confined to certain domains when the number of items to be counted is significant.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3