BAYESIAN RETRIEVAL USING A SIMILARITY-BASED LEMMATIZER

Author:

MARAGOUDAKIS MANOLIS1,LYRAS DIMITRIOS P.2,SGARBAS KYRIAKOS2

Affiliation:

1. Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece

2. Electrical and Computer Engineering Department, Wire Communications Lab, Artificial Intelligence Group, University of Patras, Rion, Patras, GR-26500, Greece

Abstract

The present paper describes a Bayesian network approach to Information Retrieval (IR) from Web documents. The network structure provides an intuitive representation of uncertainty relationships and the embedded conditional probability table is used by inference algorithms in an attempt to identify documents that are relevant to the user's needs, expressed in the form of Boolean queries. Our research has been directed in constructing a probabilistic IR framework that focus on assisting users to perform Ad-hoc retrieval of documents from the various domains such as economics, news, sports, etc. Furthermore, users can integrate feedback regarding the relevance of the retrieved documents in an attempt to improve performance on upcoming requests. Towards these goals, we have expanded the traditional Bayesian network IR system and tested it on several Greek web corpora on different application domains. We have developed two different approaches with regards to the structure: a simple one, where the structure is manually provided, and an automated one, where data mining is used in order to extract the network's structure. Results have depicted competitive performance against successful IR models of different theoretical backgrounds, such as the vector space utilizing tf-idf and the probabilistic model of BM25 in terms of precision-recall curves. In order to further improve the performance of the IR system, we have implemented a novel similarity-based lemmatization framework, reducing thus the ambiguity posed by the plethora of morphological variations of the languages in question. The employed lemmatization framework comprises of 3 core components (i.e. the word segregation, the data cleansing and the lemmatization modules) and is language-independent (i.e. can be applied to other languages with morphological peculiarities and thus improve Ad-hoc retrieval) since it achieves the mapping of an input word to its normalized form by employing two state-of-the-art language independent distance metric models, meaning the Levenshtein Edit distance and the Dice coefficient similarity measure, combined with a language model describing the most frequent inflectional suffixes of the examined language. Experimental results support our claim on the significance of this incorporation to Greek texts web retrieval as results improve by a factor of 4% to 11%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3