Consensus-Driven Cluster Analysis: Top-Down and Bottom-Up Based Split-and-Merge Classifiers

Author:

Zoghlami Mohamed Ali1,Hidri Minyar Sassi1,Ayed Rahma Ben1

Affiliation:

1. University of Tunis El Manar, National Engineering School of Tunis, BP. 73, Le Belvédère 1002, Tunis, Tunisia

Abstract

Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Typically, the goal is searching for the socalled median (or consensus) partition, i.e. the partition that is most similar, on average, to all the input partitions. In this paper we address the problem of combining multiple fuzzy clusterings without access to the underlying features of the data while basing on inter-clusters similarity. We are concerned of top-down and bottom-up based consensus-driven fuzzy clustering while splitting and merging worst clusters. The objective is to reconcile a structure, developed for patterns in some dataset with the structural findings already available for other related ones. The proposed classifiers consider dispersion and dissimilarity between the partitions as well as the corresponding fuzzy proximity matrices. Several illustrative numerical examples, using both synthetic data and those coming from available machine learning repositories, are also included. The experimental component of the study shows the efficiency of the proposed classifiers in terms of quality and runtime.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3