Affiliation:
1. University of Tunis El Manar, National Engineering School of Tunis, BP. 73, Le Belvédère 1002, Tunis, Tunisia
Abstract
Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Typically, the goal is searching for the socalled median (or consensus) partition, i.e. the partition that is most similar, on average, to all the input partitions. In this paper we address the problem of combining multiple fuzzy clusterings without access to the underlying features of the data while basing on inter-clusters similarity. We are concerned of top-down and bottom-up based consensus-driven fuzzy clustering while splitting and merging worst clusters. The objective is to reconcile a structure, developed for patterns in some dataset with the structural findings already available for other related ones. The proposed classifiers consider dispersion and dissimilarity between the partitions as well as the corresponding fuzzy proximity matrices. Several illustrative numerical examples, using both synthetic data and those coming from available machine learning repositories, are also included. The experimental component of the study shows the efficiency of the proposed classifiers in terms of quality and runtime.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence