Neural Network-based Tool for Survivability Assessment of K-variant Systems

Author:

Bekiroglu Berk1ORCID,Korel Bogdan1

Affiliation:

1. Department of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616, USA

Abstract

The K-variant is a multi-variant architecture to enhance the security of the time-bounded mission and safety-critical systems. Variants in the K-variant architecture are generated by controlled source program transformations. Previous experimental studies showed that the K-variant architecture might improve the security of systems against memory exploitation attacks. In order to estimate the survivability of K-variant systems, simulation techniques are utilized. However, these techniques are slow and may not be practical for the design of K-variant systems. Therefore, fast and highly accurate estimations of the survivability of K-variant systems are necessary for developers. The neural networks may allow quick and accurate estimation of the survivability of K-variant systems. The developed neural network-based tool can make quick and precise estimations of the survivability of K-variant systems under different conditions. In this paper, the accuracy of the neural network-based tool is investigated in an experimental study. The neural network-based tool estimations are compared with a K-variant attack emulator in three programs for up to ten variant systems under four attack types and three attack durations. The experimental study demonstrates that the neural network-based tool makes fast and accurate estimations of the survivability of K-variant systems under all the conditions investigated.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3