Exploiting User-Generated Content to Enrich Web Document Summarization

Author:

Nguyen Minh-Tien1ORCID,Tran Duc-Vu2,Tran Chien-Xuan2,Nguyen Minh-Le2

Affiliation:

1. Hung Yen University of Technology and Education (UTEHY), Vietnam

2. Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract

User-generated content such as comments or tweets (also called by social information) following a Web document provides additional information for enriching the content of an event mentioned in sentences. This paper presents a framework named SoSVMRank, which integrates the user-generated content of a Web document to generate a highquality summarization. In order to do that, the summarization was formulated as a learning to rank task, in which comments or tweets are exploited to support sentences in a mutual reinforcement fashion. To model sentence-comment (or tweet) relation, a set of local and social features are proposed. After ranking, top m ranked sentences and comments (or tweets) are selected as the summarization. To validate the efficiency of our framework, sentence and story highlight extraction tasks were taken as a case study on three datasets in two languages, English and Vietnamese. Experimental results indicate that: (i) our new features improve the summary performance of the framework in term of ROUGE-scores compared to state-of-the-art baselines and (ii) the integration of user-generated content benefits single-document summarization.

Funder

JSPS KAKENHI

CREST, JST

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Social Context Summarization with Convolutional Neural Networks;Computational Linguistics and Intelligent Text Processing;2023

2. Prioritize the key parameters of Vietnamese coffee industries for sustainability;International Journal of Productivity and Performance Management;2019-11-14

3. Web document summarization by exploiting social context with matrix co-factorization;Information Processing & Management;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3