Possibilistic Networks: Computational Analysis of MAP and MPE Inference

Author:

Levray Amélie1,Benferhat Salem2,Tabia Karim2

Affiliation:

1. School of Informatics, University of Edinburgh, 10 Crichton St. Edinburgh, EH8 9AB, United Kingdom

2. CRIL, Université d’Artois, CNRS UMR-8188, rue Jean Souvraz, Lens, 62300, France

Abstract

Possibilistic graphical models are powerful modeling and reasoning tools for uncertain information based on possibility theory. In this paper, we provide an analysis of computational complexity of MAP and MPE queries for possibilistic networks. MAP queries stand for maximum a posteriori explanation while MPE ones stand for most plausible explanation. We show that the decision problems of answering MAP and MPE queries in both min-based and product-based possibilistic networks is NP-complete. Definitely, such results represent an advantage of possibilistic graphical models over probabilistic ones since MAP queries are NPPP -complete in Bayesian networks. Our proofs for querying min-based possibilistic networks make use of reductions from the 3SAT problem to querying possibilistic networks decision problem. Moreover, the provided reductions may be useful for the implementation of MAP and MPE inference engines based on the satisfiability problem solvers. As for product-based networks, the provided proofs are incremental and make use of reductions from SAT and its weighted variant WMAXSAT.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3