Affiliation:
1. College of Physics and Optoelectronic Engineering, Xiangtan University, China
Abstract
Face recognition for a single sample per person is challenging due to the lack of sufficient sample information. However, using generic training set to learn an auxiliary dictionary is an effective way to alleviate this problem. Considering generic training sample of diversity, we proposed an algorithm of auxiliary dictionary of diversity learning (ADDL). We first produced virtual face images by mirror images, square block occlusion and grey transform, and then learned an auxiliary dictionary of diversity using a designed objective function. Considering patch-based method can reduce the influence of variations, we seek extended sparse representation with l2-minimization for each probe patch. Experimental results in the CMUPIE, Extended Yale B and LFW datasets demonstrate that ADDL performs better than other related algorithms.
Funder
Australian Research Council
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence