MINING GENOME VARIATION TO ASSOCIATE GENETIC DISEASE WITH MUTATION ALTERATIONS AND ORTHO/PARALOGOUS POLIMORPHYSMS IN TRANSCRIPTION FACTOR BINDING SITE

Author:

PONOMARENKO JULIA1,ORLOVA GALINA2,MERKULOVA TATYANA3,VASILIEV GENNADY3,PONOMARENKO MIKHAIL2

Affiliation:

1. Laboratory of Genome Structure, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia

2. Laboratory of Theoretical Genetics, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia

3. Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia

Abstract

We have developed a system rSNP_Guide, , predicting the transcription factor (TF) binding sites on DNA, which mutation-caused alterations may explain disease penetration. rSNP_Guide uses the detected alterations in the mutant DNA binding to unknown TF caused by diseases and, upon the DNA sequences, calculates the alterations in known TF sites so that to select only the known ones with calculated alterations in the best consistence with those detected. Our system has been control tested on the SNP's with known site-disease relationships. For practical aims, two TF sites associated with diseases were predicted and confirmed by the immune assay with anti-TF antibodies. In the case of tumor susceptibility, the GATA site in the second intron of mouse K-ras gene was truly predicted, whereas mutation damage of this site causes tumor resistance. In the case of alcohol dependencies and others behavioral diseases, the mutation-caused spurious YY1 site in the sixth intron of human tryptophan 2,3-dioxygenase (TDO2) gene was successfully predicted. Finally, sixteen non-documented TF sites localizable at both orthologous and paralogous genes were first characterized by three rates "present", "weakened" or "absent", with significance estimated by rSNP_Guide relatively to six TF sites with known mutation-caused alterations in DNA/TF-binding.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3