A General Framework Based on Composite Granules for Mining Association Rules

Author:

Fang Gang12,Wu Yue1

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China

2. School of Computer Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404000, P. R. China

Abstract

At present many algorithms for mining association rules have been proposed, but most of them are only suitable for discovering specific frequent itemsets from characteristic data sets on the appointed environments, namely, these algorithms are not general enough when mining association rules. In this paper, a general framework based on composite granules for mining association rules is proposed, which is a general data mining model without appointed restriction from frequent itemsets, data sets or mining environments and so on. An iterative method is efficiently applied to the general mining framework for discovering frequent itemsets, which adopts repartitioning frequent attributes to iteratively reconstruct the mixed radix information system for reducing a relational database. In order that the framework for discovering frequent itemsets has a generality, in discussing and establishing the general mining framework, this paper introduces a novel conception and data model, namely, a mixed radix information system is applied to describe a relational database, and a composite granules is used to build a specific relationship between an information system and a mixed radix information system, which can hold the same extension and simultaneously exist in two different information systems. The mixed radix information system can help the general framework to reduce information data and improve the performance of the framework for generating frequent itemsets. The composite granules model can create a relationship between an information granule and a digital information granule, and help the framework for computing the support to avoid reading the database repeatedly or using the complex data structure. Finally, a new taxonomy is presented to verify the generality and the high efficiency of the mining framework and all the experiments based on the taxonomy indicate that the general mining framework has the required generality, and the performance of the framework is better than these classical mining frameworks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3