Estimating Twitter Influential Users by Using Cluster-Based Fusion Methods

Author:

Kanavos Andreas1,Georgiou Alexandros1,Makris Christos1

Affiliation:

1. Computer Engineering and Informatics Department, University of Patras, Rio, Patras, Greece 26504, Greece

Abstract

A considerable part of social network analysis literature is dedicated to determining which individuals are to be considered as influential in particular social settings. Concretely, Social Influence can be described as the power or even the ability of a person to yet influence the thoughts as well as the actions of other users. So, User Influence stands as a value that depends on the interest of the followers of a concrete user (via retweets, replies, mentions, favorites, etc.). This paper focuses on identifying such phenomena on the Twitter graph and on presenting a novel methodology for characterizing Twitter Influential Users. The novelty of our approach lies in the fact that we have incorporated a set of features for characterizing social media authors, including both nodal and topical metrics, along with new features concerning temporal aspects of user participation on the topic. We have also implemented cluster-based fusion techniques in order to retrieve result lists for the ranking of top influential users. Hence, results show that the proposed implementations and methodology can assist in identifying influential users, that play a dominant role in information diffusion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classifying Hindi News Using Various Machine Learning and Deep Learning Techniques;International Journal on Artificial Intelligence Tools;2023-10-11

2. Clustering High-Dimensional Social Media Datasets utilizing Graph Mining;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

3. An Apache Spark Implementation for Text Document Clustering;2022 17th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP);2022-11-03

4. Information Diffusion Model in Twitter: A Systematic Literature Review;Information;2021-12-28

5. Vocabulary Size Leads to Better Attunement to L2 Phonetic Differences: Clues from Russian Learners of English;Language Learning and Development;2020-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3