Revisiting the Learned Clauses Database Reduction Strategies

Author:

Jabbour Saïd1,Lonlac Jerry1,Saïs Lakhdar1,Salhi Yakoub1

Affiliation:

1. CRIL – CNRS, University of Artois, F-62307 Lens Cedex, France

Abstract

In this paper, we revisit an important issue of CDCL-based SAT solvers, namely the learned clauses database management policies. Our motivation takes its source from a simple observation on the remarkable performances of both random and size-bounded reduction strategies. We first derive a simple reduction strategy, called Size-Bounded Randomized strategy (in short SBR), that combines maintaining short clauses (of size bounded by k), while deleting randomly clauses of size greater than k. The resulting strategy outperform the state-of-the-art on SAT instances taken from the SAT competitions 2013 and 2018, and remains competitive on a broad range of SAT instances of the SAT Competition 2014. Reinforced by the interest of keeping short clauses, we propose several new dynamic variants, and we discuss their performance. We also propose different ways for adjusting dynamically the size-bounded parameter of the strategy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Top-k Learned Clauses for Modern SAT Solvers;International Journal on Artificial Intelligence Tools;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3