Affiliation:
1. CRIL – CNRS, University of Artois, F-62307 Lens Cedex, France
Abstract
In this paper, we revisit an important issue of CDCL-based SAT solvers, namely the learned clauses database management policies. Our motivation takes its source from a simple observation on the remarkable performances of both random and size-bounded reduction strategies. We first derive a simple reduction strategy, called Size-Bounded Randomized strategy (in short SBR), that combines maintaining short clauses (of size bounded by k), while deleting randomly clauses of size greater than k. The resulting strategy outperform the state-of-the-art on SAT instances taken from the SAT competitions 2013 and 2018, and remains competitive on a broad range of SAT instances of the SAT Competition 2014. Reinforced by the interest of keeping short clauses, we propose several new dynamic variants, and we discuss their performance. We also propose different ways for adjusting dynamically the size-bounded parameter of the strategy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Top-k Learned Clauses for Modern SAT Solvers;International Journal on Artificial Intelligence Tools;2023-02