Affiliation:
1. Intelligent Data Analysis Laboratory, E.T.S.E, University of Valencia, Avda Universitat S/N, 46100 Burjassot, Valencia, Spain
Abstract
Extreme Learning Machine (ELM) is a recently proposed algorithm, efficient and fast for learning the parameters of single layer neural structures. One of the main problems of this algorithm is to choose the optimal architecture for a given problem solution. To solve this limitation several solutions have been proposed in the literature, including the regularization of the structure. However, to the best of our knowledge, there are no works where such adjustment is applied to classification problems in the presence of a non-linearity in the output; all published works tackle modelling or regression problems. Our proposal has been applied to a series of standard databases for the evaluation of machine learning techniques. Results obtained in terms of classification success rate and training time, are compared to the original ELM, to the well known Least Square Support Vector Machine (LS-SVM) algorithm and with two other methods based on the ELM regularization: Optimally Pruned Extreme Learning Machine (OP-ELM) and Bayesian Extreme Learning Machine (BELM). The obtained results clearly demonstrate the usefulness of the proposed method and its superiority over a classical approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献