Analytical and Simple Form of Shrinkage Functions for Non-Convex Penalty Functions in Fused Lasso Algorithm

Author:

Kittisuwan Pichid1

Affiliation:

1. Department of Telecommunication Engineering, Rajamangala University of Technology, (Rattanakosin), Nakhon Pathom, Thailand

Abstract

In some circumstances, the performance of machine learning (ML) tasks are based on the quality of signal (data) that is processed in these tasks. Therefore, the pre-processing techniques, such as reconstruction and denoising methods, are important techniques in ML tasks. In reconstructed (estimated) method, the fused lasso algorithm with non-convex penalty function is an efficient method when the signal corrupted by additive white Gaussian noise (AWGN) is considered. Therefore, this paper proposes new shrinkage functions for non-convex penalty functions, modified arctangent and exponential models, in fused lasso formulation. A lot of works present the shrinkage function for arctangent penalty function. Unfortunately, there is no closed-form solution. The numerical solution is required for shrinkage function of this penalty function. However, the analytical solution is derived in this paper. Moreover, the shrinkage function of modified exponential penalty function is proposed. This shrinkage function obtains from simple iterative method, fixed-point algorithm. We demonstrate the proposed methods through simulations with standard one-dimensional signals contaminated by AWGN. The proposed techniques are compared with traditional estimation methods, such as total variation (TV) and wavelet denoising methods. In experimental results, our proposed methods outperform several exiting methods both visual quality and in terms of root mean square error (RMSE). In fact, the proposed methods can better preserve the feature of noise-free signal than the compared methods. The denoised signals produced by the proposed methods are less smooth than the denoised signals produced by the compared methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3