FAULT DIAGNOSIS OF MULTIPROCESSOR SYSTEMS BASED ON GENETIC AND ESTIMATION OF DISTRIBUTION ALGORITHMS: A PERFORMANCE EVALUATION

Author:

DUARTE ELIAS P.1,POZO AURORA T. R.1,NASSU BOGDAN T.1

Affiliation:

1. Department of Computer Science – Federal University of Parana, P.O. Box 19018 Curitiba, PR Brazil

Abstract

As faults are unavoidable in large scale multiprocessor systems, it is important to be able to determine which units of the system are working and which are faulty. System-level diagnosis is a long-standing realistic approach to detect faults in multiprocessor systems. Diagnosis is based on the results of tests executed on the system units. In this work we evaluate the performance of evolutionary algorithms applied to the diagnosis problem. Experimental results are presented for both the traditional genetic algorithm (GA) and specialized versions of the GA. We then propose and evaluate specialized versions of Estimation of Distribution Algorithms (EDA) for system-level diagnosis: the compact GA and Population-Based Incremental Learning both with and without negative examples. The evaluation was performed using four metrics: the average number of generations needed to find the solution, the average fitness after up to 500 generations, the percentage of tests that got to the optimal solution and the average time until the solution was found. An analysis of experimental results shows that more sophisticated algorithms converge faster to the optimal solution.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Customizable Mapping of Virtualized Network Services in Multi-datacenter Environments Based on Genetic Metaheuristics;Journal of Network and Systems Management;2023-08-01

2. A genetic scheduling strategy with spatial reuse for dense wireless networks;International Journal of Hybrid Intelligent Systems;2023-07-11

3. Intelligent Mapping of Virtualized Services on Multi-domain Networks;Intelligent Systems Design and Applications;2023

4. A Bioinspired Scheduling Strategy for Dense Wireless Networks Under the SINR Model;Intelligent Systems Design and Applications;2023

5. Time-series pattern recognition with an immune algorithm;IOP Conference Series: Materials Science and Engineering;2015-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3