Improved Multi-domain Convolutional Neural Networks Method for Vehicle Tracking

Author:

Wang Jianwen1,Li Aimin1,Pang Y.1

Affiliation:

1. Computer Science and Technology, Qilu University of Technology, (Shandong Academy of Sciences), 250300 Jinan, Shandong, China

Abstract

In the field of intelligent transportation, background complexity, lighting changes, occlusion, and scale transformation affect the tracking results of moving vehicles in the video. We propose an improved vehicle object tracking algorithm based on Multi-Domain Convolutional Neural Networks (MDNet), combining the instance segmentation method with the MDNet algorithm, adding two attention mechanisms to the algorithm. The module extracts better features, ensures that the vehicle object adapts to changes in appearance, and greatly improves tracking performance. Our improved algorithm has a tracking precision rate of 91.8% and a success rate of 67.8%. The Vehicle Tracking algorithm is evaluated on the Object Tracking Benchmark (OTB) data set. The tracking results are compared with eight mainstream object tracking algorithms, and the results show that our improved algorithm has excellent performance. The object tracking precision rate and tracking success rate of this algorithm have achieved excellent results in many cases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ration Van Tracking Using Android Application;International Journal of Innovative Science and Research Technology (IJISRT);2024-03-28

2. An improved MDNet target tracking algorithm;Second International Conference on Digital Signal and Computer Communications (DSCC 2022);2022-08-04

3. An Object Detection and Tracking Algorithm Combined with Semantic Information;Mobile Multimedia Communications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3