Affiliation:
1. Computer Science and Informatics Department, University of Delaware, United States
2. Computer Engineering Department, Iran University of Science and Technology, Iran
Abstract
Drug discovery is a complicated, time-consuming and expensive process. The cost for each new molecular entity (NME) is estimated at $1.8 billion. Furthermore, for a new drug to be FDA approved it often takes nearly a decade and approximately 20 new drugs being approved by the US Food and Drug Administration (FDA) each year. Accurately predicting drug-target interactions (DTIs) by computational methods is an important area of drug research, which brings about a broad prospect for fast and low-risk drug development. By accurate prediction of drugs and targets interactions scientists can scale-down huge experimental space and reduce the costs and help to faster drug development as well as predicting the side effects and potential function of new drugs. Many approaches have been taken by researchers to solve DTI problem and enhance the accuracy of methods. State-of-the-art approaches are based on various techniques, such as deep learning methods-like stacked auto-encoder-, matrix factorization, network inference, and ensemble methods. In this work, we have taken a new approach based on node embedding in a heterogeneous interaction network to obtain the representation of each node in the interaction network and then use a binary classifier such as logistic regression to solve this prominent problem in the pharmaceutical industry. Most introduced network-based methods use a homogeneous network of interactions as their input data whereas in the real word problem there exist other informative networks to help to enhance the prediction and by considering the homogeneous networks we lose some precious network information. Hence, in this work, we have tried to work on the heterogeneous network and have improved the accuracy of methods in comparison to baseline methods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献