Drug-target Interaction Prediction by Metapath2vec Node Embedding in Heterogeneous Network of Interactions

Author:

Samizadeh Mina1ORCID,Minaei-Bidgoli Behrouz2ORCID

Affiliation:

1. Computer Science and Informatics Department, University of Delaware, United States

2. Computer Engineering Department, Iran University of Science and Technology, Iran

Abstract

Drug discovery is a complicated, time-consuming and expensive process. The cost for each new molecular entity (NME) is estimated at $1.8 billion. Furthermore, for a new drug to be FDA approved it often takes nearly a decade and approximately 20 new drugs being approved by the US Food and Drug Administration (FDA) each year. Accurately predicting drug-target interactions (DTIs) by computational methods is an important area of drug research, which brings about a broad prospect for fast and low-risk drug development. By accurate prediction of drugs and targets interactions scientists can scale-down huge experimental space and reduce the costs and help to faster drug development as well as predicting the side effects and potential function of new drugs. Many approaches have been taken by researchers to solve DTI problem and enhance the accuracy of methods. State-of-the-art approaches are based on various techniques, such as deep learning methods-like stacked auto-encoder-, matrix factorization, network inference, and ensemble methods. In this work, we have taken a new approach based on node embedding in a heterogeneous interaction network to obtain the representation of each node in the interaction network and then use a binary classifier such as logistic regression to solve this prominent problem in the pharmaceutical industry. Most introduced network-based methods use a homogeneous network of interactions as their input data whereas in the real word problem there exist other informative networks to help to enhance the prediction and by considering the homogeneous networks we lose some precious network information. Hence, in this work, we have tried to work on the heterogeneous network and have improved the accuracy of methods in comparison to baseline methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3