Evaluating the Effects of Modern Storage Devices on the Efficiency of Parallel Machine Learning Algorithms

Author:

Akritidis Leonidas1ORCID,Fevgas Athanasios1,Tsompanopoulou Panagiota1,Bozanis Panayiotis1

Affiliation:

1. Data Structuring & Engineering Lab, Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani & 28th October Str, 382 21 Volos, Greece

Abstract

Big Data analytics is presently one of the most emerging areas of research for both organizations and enterprises. The requirement for deployment of efficient machine learning algorithms over huge amounts of data led to the development of parallelization frameworks and of specialized libraries (like Mahout and MLlib) which implement the most important among these algorithms. Moreover, the recent advances in storage technology resulted in the introduction of high-performing devices, broadly known as Solid State Drives (SSDs). Compared to the traditional Hard Drives (HDDs), SSDs offer considerably higher performance and lower power consumption. Motivated by these appealing features and the growing necessity for efficient large-scale data processing, we compared the performance of several machine learning algorithms on MapReduce clusters whose nodes are equipped with HDDs, SSDs, and devices which implement the latest 3D XPoint technology. In particular, we evaluate several dataset preprocessing methods like vectorization and dimensionality reduction, two supervised classifiers, Naive Bayes and Linear Regression, and the popular k-Means clustering algorithm. We use an experimental cluster equipped with the three aforementioned storage devices under different configurations, and two large datasets, Wikipedia and HIGGS. The experiments showed that the benefits which derive from the usage of SSDs depend on the cluster setup and the nature of the applied algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Median-based Resilient Distributed Optimization Algorithm Against Byzantine Attack;International Journal on Artificial Intelligence Tools;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3