A STEERABLE MULTITOUCH DISPLAY FOR SURFACE COMPUTING AND ITS EVALUATION

Author:

KOUTLEMANIS PANAGIOTIS1,NTELIDAKIS ANTONIOS1,ZABULIS XENOPHON1,GRAMMENOS DIMITRIS1,ADAMI ILIA1

Affiliation:

1. Foundation for Research and Technology – Hellas (FORTH), Institute of Computer Science, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

Abstract

In this paper, a steerable, interactive projection display that has the shape of a disk is presented. Interactivity is provided through sensitivity to the contact of multiple fingertips and is achieved through the use of a RGBD camera. The surface is mounted on two gimbals which, in turn, provide two rotational degrees of freedom. Modulation of surface posture supports the ergonomy of the device but can be, alternatively, used as a means of user-interface input. The geometry for mapping visual content and localizing fingertip contacts upon this steerable display is provided, along with pertinent calibration methods for the proposed system. An accurate technique for touch detection is proposed, while touch detection and projection accuracy issues are studied and evaluated through extensive experimentation. Most importantly, the system is thoroughly evaluated as to its usability, through a pilot application that was developed for this purpose. We show that the outcome meets real-time performance, accuracy and usability requirements for employing the approach in human computer interaction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic mapping study on usability and user eXperience evaluation of multi-touch systems;Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems;2022-10-17

2. Digital Cultural Heritage Experience in Ambient Intelligence;Mixed Reality and Gamification for Cultural Heritage;2017

3. Touch detection for planar interactive displays based on lateral depth views;Multimedia Tools and Applications;2016-06-28

4. Lateral Touch Detection and Localization for Interactive, Augmented Planar Surfaces;Advances in Visual Computing;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3