Conformal Region Classification with Instance-Transfer Boosting

Author:

Zhou Shuang1,Smirnov Evgueni Nikolaevich1,Peeters Ralf1

Affiliation:

1. Department of Knowledge Engineering, Maastricht University, P. O. Box 616, Maastricht, 6200 MD, The Netherlands

Abstract

Conformal region classification focuses on developing region classifiers; i.e., classifiers that output regions (sets) of classes for new test instances.2,13,16 Conformal region classifiers have been proven to be valid for any significance level [Formula: see text] in the sense that the probability the class regions do not contain the true instances' classes does not exceed [Formula: see text]. In practice, however, conformal region classifiers need to be also efficient; i.e., they have to output non-empty and relatively small class regions. In this paper we show that conformal region classification can benefit from instance transfer learning. Our new approach consists of the basic conformal region classifier with a nonconformity function that implements instance transfer. We propose to learn such a function using a new multi-class Transfer AdaBoost.M1 algorithm. The function and its relation to the conformal region classification are theoretically justified. The experiments showed that our approach is valid for any significance level [Formula: see text] and its efficiency can be improved with instance transfer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference12 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3