EVOLUTIONARY NEURAL LOGIC NETWORKS IN SPLICE-JUNCTION GENE SEQUENCES CLASSIFICATION

Author:

TSAKONAS ATHANASIOS1,TSILIGIANNI THEODORA2,DOUNIAS GEORGIOS3

Affiliation:

1. Aristotle University of Thessaloniki, Artificial Intelligence and Information Analysis Laboratory, Department of Informatics, Thessaloniki, Greece

2. Aristotle University of Thessaloniki, Department of Biology, Biology Building, Thessaloniki, Greece

3. University of the Aegean, Department of Financial and Management Engineering, 31 Fostini Str., Chios, Greece

Abstract

The paper demonstrates the efficient use of hybrid intelligent systems for solving the classification problem of splice-junction gene sequences. The aim of the study is to obtain classification schemes able to recognize, given a sequence of DNA, the boundaries between exons and introns. Previous attempts to form efficient classifiers for the same problem using intelligent or standard statistical techniques are discussed throughout the paper. The authors propose the use of evolutionary neural logic networks, an advantageous approach for their ability to interpret their structure into expert rules, a desirable feature for field experts. Evolutionary neural logic networks in fact consist an innovative hybrid intelligent methodology, by which evolutionary programming techniques are used for obtaining the best possible topology of a neural logic network. The genetic programming process is guided using a context-free grammar and indirect encoding of the neural logic networks into the genetic programming individuals. Indicative classification results are presented and discussed in detail in terms of both, classification accuracy and solution interpretability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3