A Multiagent Planning Approach for Cooperative Patrolling with Non-Stationary Adversaries

Author:

Beynier Aurélie1

Affiliation:

1. Sorbonne Universités, UPMC Univ Paris 06 CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract

Multiagent patrolling is the problem faced by a set of agents that have to visit a set of sites to prevent or detect some threats or illegal actions. Although it is commonly assumed that patrollers share a common objective, the issue of cooperation between the patrollers has received little attention. Over the last years, the focus has been put on patrolling strategies to prevent a one-shot attack from an adversary. This adversary is usually assumed to be fully rational and to have full observability of the system. Most approaches are then based on game theory and consists in computing a best response strategy. Nonetheless, when patrolling frontiers, detecting illegal fishing or poaching; patrollers face multiple adversaries with limited observability and rationality. Moreover, adversaries can perform multiple illegal actions over time and space and may change their strategies as time passes. In this paper, we propose a multiagent planning approach that enables effective cooperation between a team of patrollers in uncertain environments. Patrolling agents are assumed to have partial observability of the system. Our approach allows the patrollers to learn a generic and stochastic model of the adversaries based on the history of observations. A wide variety of adversaries can thus be considered with strategies ranging from random behaviors to fully rational and informed behaviors. We show that the multiagent planning problem can be formalized by a non-stationary DEC- POMDP. In order to deal with the non-stationary, we introduce the notion of context. We then describe an evolutionary algorithm to compute patrolling strategies on-line, and we propose methods to improve the patrollers’ performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-agent Reward-Based Intruder Capture;Studies in Computational Intelligence;2024

2. Patrolling games with coordination between monitoring devices and patrols;Reliability Engineering & System Safety;2023-05

3. Optimal Consensus Recovery of Multi-agent System Subjected to Agent Failure;International Journal on Artificial Intelligence Tools;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3